
Liquefaction Risk Assessment Using Geostatistics
to account for Soil Spatial Variability

Jack W. Baker, M.ASCE1; and Michael H. Faber2

Abstract: Liquefaction triggering assessments are often performed for individual locations, providing little information in regard to the
expected spatial extent of liquefaction events. The present paper proposes a method to quantify the potential extent of liquefaction by
accounting for spatial dependence of soil properties and potential future earthquake shaking. Random-field theory and geostatistics tools
are used to model soil properties and earthquake shaking intensity; this approach facilitates incorporation of measurement results obtained
at individual locations within the area of interest. An empirical liquefaction triggering criterion is then used to model liquefaction
occurrence as a function of the random-field realizations. The framework components are briefly described and an example analysis is
performed to illustrate the details of the approach. The area of liquefied soil under a building in Adapazari, Turkey, is considered in the
example, conditional upon soil property measurements obtained from nearby standard penetration tests.
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Introduction

Empirical models for the assessment of soil liquefaction potential
are based on soil properties at individual locations. To assess
consequences of liquefaction as they relate to civil structures,
however, it would be helpful to also understand the potential
spatial extent of liquefaction events. This requires the spatial de-
pendence of soil properties and ground motion intensity to be
quantified and incorporated in an analysis framework. Dependen-
cies within and among these properties affect the potential extent
of liquefaction, and they also inform the analyst as to the uncer-
tainty in soil properties at points near sampled locations where
soil properties are understood in greater detail.

Tools developed in the field of geostatistics are applicable for
incorporating spatial dependencies. This field has undergone sig-
nificant development in the past few decades in fields such as
mining, petroleum engineering, and hydrology, where there is a
need to infer the spatial dependence of underground phenomena
from a limited number of samples. The use of this approach for
liquefaction problems approach has received some recent atten-
tion �e.g., Baise et al. 2006�, but its interface with other tools such
as seismic hazard analysis is considered more closely here.

Evaluation of liquefaction risk, even at individual locations,

1Assistant Professor, Dept. of Civil and Environmental Engineering,
Stanford Univ., 240 Terman Engineering Center, Stanford, CA 94305;
formerly, Research Associate, ETH Zurich. E-mail: bakerjw@
stanford.edu

2Professor, Chair of Risk and Safety, Swiss Federal Institute of
Technology, ETH Zurich; Wolfgang-Pauli-Strauss 15, HIL E 23.3,
CH-8093 Zurich, Switzerland.

Note. Discussion open until June 1, 2008. Separate discussions must
be submitted for individual papers. To extend the closing date by one
month, a written request must be filed with the ASCE Managing Editor.
The manuscript for this paper was submitted for review and possible
publication on July 17, 2006; approved on April 20, 2007. This paper is
part of the Journal of Geotechnical and Geoenvironmental Engineer-
ing, Vol. 134, No. 1, January 1, 2008. ©ASCE, ISSN 1090-0241/2008/1-

14–23/$25.00.

14 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEE
requires the use of several engineering models. Empirically de-
veloped criteria provide models for the probability of liquefaction
occurring at a site for given values of the relevant soil properties
and ground motion shaking intensity. Probability distributions for
the needed soil properties can be obtained from published studies,
measurements obtained at the site, and expert judgment by quali-
fied geotechnical engineers. The probability distribution for
ground motion intensity from potential future earthquakes can be
obtained using probabilistic seismic hazard analysis.

The combination of these various models to assess the poten-
tial spatial extent of liquefaction is explained in this paper. A
framework is described that combines available geotechnical,
geostatistical, and seismic hazard models to produce informative
assessments of potential liquefaction extent. Challenges for
implementation lie primarily with obtaining appropriate charac-
terizations of soil properties, rather than with the required
computations. The approach promises to help analysts better un-
derstand liquefaction risks at a site, as well as increase the amount
of insight provided by sample data.

Approach

Assessment of liquefaction requires models from geotechnical en-
gineering and seismology, and accounting for spatial dependence
requires additional tools from geostatistics. By incorporating all
of the needed models, as illustrated schematically in Fig. 1, a
framework can be used to consider spatial distribution of occur-
rence. First, random fields are established to represent the soil
properties and ground motion parameters of interest in a given
area. A liquefaction triggering criterion is then evaluated at each
individual location, based on the model parameters specified by
the random fields. Finally, a probabilistic assessment of the lique-
faction realizations may be performed using the field models and
liquefaction criterion. The individual components of this frame-

work are described briefly in this section.
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Modeling of Liquefaction Occurrence

The method chosen used to model liquefaction will determine
which soil properties must be considered, so it is useful to
consider this model component first. The most common approach
for modeling liquefaction occurrence in practice uses empirical
criteria that relate measured soil parameters and observed occur-
rence �or nonoccurrence� of liquefaction during past earthquakes.
These criteria can be based on a variety of in situ soil properties
obtained using various sampling methods. The standard penetra-
tion test �SPT� is the most common testing method, and data
obtained using this method are often used for modeling �e.g.,
Cetin et al. 2004; Youd et al. 2001�. Alternative models are based
on data obtained from the cone penetration test �CPT�, site shear
wave velocity, or other testing methods �see, e.g., Kramer 1996�.
The framework proposed in this paper should be used with proba-
bilistic liquefaction criteria, explicitly including model uncer-
tainty, rather than deterministic factor-of-safety criteria, which
neglect model uncertainty and often include an unquantified level
of conservatism.

Some liquefaction evaluations are based on finite-element
method approaches that attempt to model the physical phenom-
enon of liquefaction, rather than relying on empirical field obser-
vations. This approach can potentially capture more complex
effects such as postliquefaction soil behavior and the interaction
between liquefying soil and nearby structures. Models of this type
have been used in other studies that consider seismic response of
random-field soil models �e.g., Fenton and Vanmarcke 1998;
Popescu et al. 2005�, and they could be incorporated in the ap-
proach described here if desired.

Probability Distributions for Soil Properties

Liquefaction triggering criteria based on SPT data, typically, re-
quire knowledge of soil penetration resistance, stress conditions,
fines content, and soil shear wave velocity. For criteria-based on
the cone penetration test, details differ but the general approach is
the same. Several past studies have provided guidance regarding
appropriate probability distributions of these soil parameters, for
various soil types �e.g., Fenton 1999a,b; JCSS 2002; Jones et al.

Fig. 1. Schematic illustration of the procedure for evaluating the
extent of soil liquefaction as a function of random fields of soil
properties and other model parameters
2002; Phoon and Kulhawy 1999a,b�. Additional guidance may be
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available from judgment by geologists and geotechnical engineers
familiar with the site, and from testing results at the site of inter-
est. Guidance may sometimes come in the form of a range of
possible values for the properties, and those ranges will need to
be transformed into probability distributions for the approach
used here. Empirical criteria are generally based on the soil values
at only the critical �i.e., most liquefaction susceptible� layer of the
soil, so that only a single value is needed for each surface location
at the site.

Spatial Dependence of Soil Properties

Spatial dependence is used to quantify the relationship between
soil properties at multiple site locations. This knowledge is used
to answer the question, “given knowledge of soil properties at one
boring, how much is the uncertainty at other locations reduced?”
Typically, dependence is modeled using a correlation coefficient
between the unknown values of a soil property at two points, and
the correlation decreases with increasing distance between the
points �Baise et al. 2006; Degroot and Baecher 1993�. It should be
noted that in many cases, the correlation coefficient is actually
computed for transformed data rather than the original data, as
will be explained below. Spatial dependence models are ad-
dressed in the literature, but they are less common than results
for probability distributions of soil properties at a single point
�Fenton 1999b; Jaksa and Fenton 2000; Uzielli et al. 2005�. Char-
acterizing spatial dependence for general cases is difficult because
the spatial dependence model is dependent upon other modeling
assumptions such as whether the soil properties are homogeneous.
Dependence can be estimated using empirical data, so datasets
containing a large number of soil borings are helpful for devel-
oping this component of the framework. It is important to note
that a linear correlation coefficient does not completely describe
the stochastic dependence of two random variables, except for
the case of joint normal distributions, but it is often all that can
be quantified, and in many practical applications has been ob-
served to be a sufficiently accurate representation of dependence
�Goovaerts 1997; Phoon 2006�.

Measured Soil Properties

On-site tests are a part of many liquefaction assessments. The
results obtained using methods such as the SPT, CPT, and spectral
analysis of surface waves �SASW� help to identify the geology of
the site, which guides the selection of appropriate soil probability
distributions. But the observations also provide more precise in-
formation about soil properties at the specific locations that were
sampled and, due to the spatial dependence, increased informa-
tion about soil properties at nearby locations. The ability to incor-
porate this information is an important feature of the proposed
framework.

Ground Motion Intensity

Soil properties quantify the resistance of a site to liquefaction, but
the loads applied to the site also affect the potential occurrence of
liquefaction. For assessment of the probability of a site liquefy-
ing, it is necessary to compute the rates of occurrence of all
ground motion intensities of interest. For many empirical lique-
faction occurrence models, ground motion intensity is measured
using a combination of peak ground acceleration �PGA� and the
earthquake’s magnitude �M�, which is a proxy for the ground

motion duration.
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Information regarding recurrence of PGA and M can be ob-
tained using probabilistic seismic hazard analysis �PSHA�, along
with results from deaggregation �Kramer 1996; McGuire 2004�.
Deaggregated PSHA provides rates of exceedance of given levels
of PGA along with the conditional distribution of causal earth-
quake magnitudes associated with exceedance of each PGA
level—this can be converted into joint rates of occurrence of
discretized PGA and M values �Bazzurro 1998, p. 195�. Standard
PSHA provides the needed joint density for only a single location.
Ground motion intensities can with reasonable accuracy be as-
sumed to be perfectly dependent over scales of a few hundred
meters, but for regional assessments over scales of kilometers,
spatial variation will need to be considered �e.g., Wang and
Takada 2005�.

Spatial Distribution of Liquefaction Occurrence

Liquefaction criteria can often be formulated as limit state func-
tions referring to soil properties at a single location �see, e.g.,
Eq. �1� below�. Thus, at each location, it is possible to compute a
probability of liquefaction. The ground motion intensity and soil
properties at nearby locations are likely to be dependent, how-
ever, and so it may also be of interest to quantify the regions of
potential liquefaction. The vector u designates the coordinates of
a location in the site, and at each location u, the limit state func-
tion g�X ,u� takes a value, depending upon the values of the
model parameters X at that location �one such function will be
discussed in detail below�. Because the model parameter values
such as soil properties are spatially dependent, the values of
g�X ,u� are also spatially dependent. Values of g�X ,u� less than
zero indicate liquefaction, and so regions where g�X ,u� is less
than zero are regions where liquefaction will occur. Because the
model parameters, and thus g�X ,u�, are not known with certainty,
they are best expressed as random variables. The spatial distribu-
tion of these random variables can be considered using random-
field techniques �Fenton 1990; Vanmarcke 1983�. In this view,
regions of liquefaction correspond to excursions of random fields.
It should be noted that while this formulation is compatible with
the use of empirical liquefaction criteria, it does not recognize
that liquefaction occurrence at one location has a causal effect on
liquefaction triggering at adjacent locations; this challenge will be
addressed in more detail in the Discussion section below.

Two primary approaches are available for considering excur-
sions of random fields. The first approach uses analytical formulas
obtained using random-field theory �Adler 1981; Faber 1989;
Vanmarcke 1983�. Under certain conditions, closed-form equa-
tions for some properties of g�X ,u� can be obtained. Nearly all
results have been obtained for cases where g�X ,u� is a Gaussian
field �i.e., all sets of points in the field are defined by joint Gauss-
ian distributions�, or a type closely related to a Gaussian field.
Some stationarity restrictions are generally also required. Assum-
ing these requirements are met, results can be obtained for the
expected number of excursions in a region and the expected area
of each excursion. The probability of an excursion at a site can
also be computed, although this is a limiting value for low excur-
sion probabilities �Adler and Taylor 2007�. Analytical solutions
are appealing because of their ability to explicitly provide a rela-
tionship between model parameters and computed values, but the
required assumptions are often not met for typical liquefaction
assessment problems. Further, this approach does not easily allow
for incorporation of observed values at individual locations ob-
tained by soil sampling, which is often an important part of prac-

tical liquefaction susceptibility evaluations.
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The second approach for incorporating spatial variability is to
use Monte Carlo methods to simulate potential realizations of the
random-field g�X ,u� that are consistent with the random-field
characterizations of all input variables. The field of geostatistics
considers approaches of this type �Goovaerts 1997�. This ap-
proach is not limited by the assumptions required to obtain ana-
lytical solutions, and it has the important advantage �for this
application� of incorporating observed data values at sampled lo-
cations. No analytical solutions for excursion properties are avail-
able with this approach, and the computational expense may be
significant in some cases. Efficient simulation algorithms are
available, however, and computational expense associated with
generating the simulations is often much less than the expense
associated with analyzing the results, as is the case here �Deutsch
and Journel 1997�. Note that Monte Carlo simulations of random
fields are often performed in the frequency domain. Frequency-
domain approaches have some desirable features, but are not able
to incorporate observed values and so are not considered further
here.

Example Application and Algorithmic Details

To illustrate the approach and provide some algorithmic details,
the probabilistic modeling of liquefaction at an example site in
Adapazari, Turkey, is considered. Extensive postearthquake in-
vestigations following the 1999 magnitude 7.4 Kocaeli earth-
quake have produced a large set of soil borings that are now
available for analysis �Bray et al. 2004�. SPT logs and other rel-
evant information are available on a dedicated website �Bray et al.
2000, http://peer.berkeley.edu/publications/turkey/adapazari�. A
small individual site in this city, shown in Fig. 2, is considered
here. Of particular interest is the probability that a specified frac-
tion of the area under one of the buildings will liquefy during a
future earthquake. Results from four nearby SPT tests are avail-
able and are used to constrain the uncertainty in soil properties at
other locations within the site.

Note that while the results below use measured data when
possible to illustrate the interface with real engineering data,
several important model parameters were unavailable and thus
assumed. Further, the complete distribution of potential ground
motion intensities will be considered for the risk analysis compu-
tation. Therefore, the calculations should be interpreted as a dem-
onstration of the relevant calculations, rather than a validation or

Fig. 2. Example site in Adapazari �adapted from Bray et al. 2000�
case-study exercise.
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Soil Properties and Liquefaction Criterion

The SPT-based empirical liquefaction criterion proposed by Cetin
et al. �2004� is used for this example. It can be expressed using
the following limit state function:

g�X,u� = g�N1,60,CSReq,Mw,FC,�v�,��

= N1,60�1 + 0.004FC� − 13.32 ln CSReq − 29.53 ln M

− 3.70 ln
�v�

Pa
+ 0.05FC + 16.85 + �L �1�

where N1,60=corrected SPT blow count; CSReq=equivalent cyclic
stress ratio; M =moment magnitude of the earthquake; FC=fines
content; �v�=effective vertical stress; and �L=random variable
representing model uncertainty. In the earlier discussion, X was
used to refer to the vector of these variables. Function values of
less than zero indicate occurrence of liquefaction. Given that
some or all of the model parameters will be not perfectly known
�and that the exact value of �L is never known� it is not possible
to make a deterministic prediction of liquefaction occurrence. By
characterizing the uncertainty in the predictor variables, however,
one can compute the probability of liquefaction.

To evaluate Eq. �1�, a few further relationships are needed. The
calculation for equivalent cyclic stress ratio is

CSReq = 0.65�PGA

g
���v

�v�
�rd �2�

where g=acceleration of gravity; �v=total vertical stress; and
rd=the nonlinear shear mass participation factor. A variety of
models have been proposed for rd, but the model of Cetin et al.
�2004� is adopted here, as it was used in the development of the
above criterion

rd =

�1 +
− 23.013 + 2.949amax + 0.999Mw + 0.0525Vs,12 m

*

16.258 + 0.201e0.341�−d+0.0785Vs,12 m
* +7.586� �

�1 +
− 23.013 + 2.949amax + 0.999Mw + 0.0525Vs,12 m

*

16.258 + 0.201e0.341�0.0785Vs,12 m
* +7.586� �

+ �rd
�3�

where Vs,12 m
* =representative shear wave velocity over the top

12 m at the site; and �rd
=Gaussian random variable representing

model error. Eq. �3� is only valid when the critical liquefaction
layer is in the top 20 m, as is always the case in this example, but
Cetin et al. �2004� provide another equation for depths greater
than 20 m.

The evaluation of liquefaction triggering for a single point thus
requires the evaluation of Eqs. �1�–�3�, and the input parameters
in these equations are modeled as random fields. The parameter
models have been chosen for this application based on empirical
observations at and around the site, and literature guidance where
appropriate. To simplify the illustration here, a single soil layer is
assumed to be the critical liquefaction susceptible layer for the
entire site.

Cetin et al. �2004� specify the following distributions for the
model errors: �L has a Gaussian distribution with a mean of zero
and a standard deviation of 2.7, and �rd

is Gaussian with zero

mean and standard deviation equal to
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��rd
= � d0.85 · 0.0198 if d � 12 m

120.85 · 0.0198 if d�12 m
� �4�

where d=depth of the critical liquefaction susceptible layer.
Other random variables for soil properties were defined as fol-

lows: the distribution of N1,60 was defined by an empirical distri-
bution of 312 measured values from throughout the city �it had a
mean of 6.5, a standard deviation of 5.6, and a strong skew to the
right�. Note that homogeneity has been assumed in order to esti-
mate the probability distribution from this sample of measure-
ments. Average shear wave velocity, Vs,12 m

* , was deterministically
defined as 150 m/s, on the basis of spectral analysis of surface
waves data at the site �Bray et al. 2004�. Fines content was mod-
eled as beta distributed with parameters a=2.9 and b=7.3 esti-
mated from a maximum likelihood fit to 33 measured values from
throughout the city.

For the purposes of illustration, all random variables except
N1,60 were assumed to be perfectly dependent at the spatial scale
of Fig. 2 �i.e., within one simulation, the variables take the same
value at each location in the example site�. The spatial depen-
dence of N1,60 was treated more rigorously, as explained in the
following section.

Spatial Dependence of Soil Properties

The mean value of N1,60 is assumed to be known and constant
throughout the study site. This assumption, believed to be reason-
able here, allows for the use of so-called simple Kriging when
developing estimates of the joint probability distributions at mul-
tiple points in the site. Other Kriging approaches allow for local
variations in mean values, or for mean values that vary smoothly
over the study site, and can also be utilized within this framework
if deemed appropriate.

The stochastic dependence between soil properties at any two
points is modeled using a covariance function. For Gaussian data,
this fully describes the joint dependence between properties at
two points, and the analytical equations are very tractable. Soil
properties do not generally have Gaussian distributions, however.
To take advantage of the desirable properties of multivariate
Gaussian models, the data of interest are transformed using a
normal-score mapping. This transform requires the complimen-
tary distribution function �CDF� of the true soil values, which
is obtained using either an empirical CDF from observed data
values or the CDF corresponding to an appropriate parametric
distribution. Each potential value of the soil property is then
mapped to a value such that the CDF of the original soil property
has the same fractile value as the transformed value does with
regard to a standard Gaussian CDF �Goovaerts 1997; Phoon
2006; Rosenblatt 1952�. This is expressed mathematically by

z = �−1	F�y�
 �5�

where y=original data from a distribution represented by the
CDF F�y�; �−1�·�=inverse of the standard Gaussian CDF; and
z=transformed data. This transformation by definition produces
variables that marginally have a standard Gaussian distribution.
After verifying that the transformed data are reasonably repre-
sented by a multivariate Gaussian distribution, these transformed
data are used for statistical estimation and simulation.

The normal-score transformed data are used to estimate spatial
dependence, using an empirical semivariogram �Goovaerts 1997�.
The semivariogram, denoted ��h� is equal to half of the variance

of the increment in data points separated by a distance h
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��h� = 1
2Var	Z�u� − Z�u + h�
 �6�

where Z�u�=distribution of the �normal-score-transformed� ran-
dom variable at location u. The vector distance h accounts for
both length and direction. Because the models in this application
consider only variation of critical values in a horizontal plane, and
not variation with depth, isotropy is assumed for this application,
so that the semivariogram is a function of separation length only,
but if appropriate the semivariogram can be a function of orien-
tation as well. This semivariogram is often used in geostatistics
instead of a covariance, because it requires second-order station-
arity of only the increments and not the underlying process, but
the two can be used interchangeably in nearly all applications.
Here, a semivariogram function of the following form was chosen
for the �transformed� corrected SPT blow count, N1,60:

��h� = �1.5� h
c� − 0.5� h

c�3 if h � c

1 if h � c
� �7�

where h= �directionally independent� scalar separation length;
and c=so-called range parameter that indicates the scale at which
spatial dependence is significant. This functional form is referred
to as a spherical model. Basic tools for empirical semivariogram
analysis are available in many GIS software packages, as well as
stand-alone geostatistics tools �e.g., SCRF 2006�. In the following
results, c values of 10, 25, and 50 m are considered, to show the
effect of spatial dependence on calculated results. While charac-
terization of spatial correlation remains a challenge, due to lim-
ited data and limited reporting in the scientific literature, these c
values are in the range consistent with empirical results obtained
from the 312 sampled sites in the region.

Once the spatial dependence has been defined, realizations of
N1,60 can be generated using a sequential simulation approach.
Consider the example site from Fig. 2. Soil properties are desired
for a discretized field of 120�200 elements, each with dimension
25�25 cm. Simulations of N1,60 values for these 24,000 elements
are needed that are consistent with the observed marginal distri-
butions and the spatial dependence of this property, as well as the
four observed values.

The sequential simulation approach is appealing because it is
easy to generate samples for a single element, conditional upon
the values of sampled elements at surrounding locations. Realiza-
tions of the N1,60 values at the site of interest can be generated
using a series of successive conditional simulations �Goovaerts
1997�. First, the conditional distribution at an arbitrary unsampled
location, u�1� is determined, conditional upon values of the
originally sampled data points. Because the data have been
normal-score transformed, this conditional distribution is easy to
compute. The joint distribution of Z�1� and the values of the
sampled data points are given by

�Z�1�

Z�·� � � N��0

0
�,� 1 �12

�21 �22
�� �8�

where �N�� ,�� denotes that the vector of random variables has
a joint normal distribution with mean values � and covariance
matrix � �note that � and � have been partitioned in Eq. �8� to
clarify the matrix operations below�. The vector Z�·� represents
the original �transformed� data values at the sampled locations;
and 0 is a vector of zeros having the same size as Z�·�. The cova-
riance matrix is dependent upon the locations of the original and
simulated data points. Each element of the matrix can be com-
puted by evaluating Eq. �7�, noting that the covariance between

locations with a separation distance h is equal to 1−��h�. Note
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that all means are equal to zeros and all variances are equal to 1
because of the normal-score transform.

Given this model for the joint distribution, the distribution of
Z1 conditional upon the original data points is given by

�Z�1��Z�·� = z� � N��12 · �22
−1 · z, 1 − �12 · �22

−1 · �21� �9�

where z=vector of N1,60 values at the sampled locations. Note
that Z�·��random variable representing the model for uncertain
soil parameters prior to sampling, and sampling has revealed their
values z. A value for Z�1� is simulated from this conditional dis-
tribution, and this value is then treated as a fixed data point for
later simulations at other locations �i.e., Z�1� is included in the
vector Z�·� of Eq. �9� for the subsequent simulations of
Z�2� ,Z�3� , . . .�.

The process is repeated at each location in the region, and at
each location a conditional distribution is computed based on the
values of the original data points plus the previously simulated
data points. Once values have been simulated for all locations, the
resulting field can be transformed back to the original probability
distribution by inverting Eq. �5� for each z value. The resulting set
of values represents one realization of the soil properties at the
site of interest. The simulated field will always agree with ob-
served values at sampled locations, and at other locations it will
be consistent with the specified stochastic properties of the field.

Many generalizations of this basic approach have been devel-
oped �e.g., Deutsch and Journel 1997; Goovaerts 1997�. One im-
portant extension is the simulation of vector-valued random
fields. A procedure similar to the one above is used, but now at
each location in the site a vector containing each parameter of
interest is simulated, conditional upon the values of parameters
previously observed or simulated. The approach is not used here,
but it will be incorporated in future work using this framework.

A few issues relating to the practical implementation of this
approach should be noted briefly. Mathematically, the order of
locations at which values are simulated is not important, but usu-
ally a unique order is used for each sample to ensure sufficient
variety among a finite number of samples. Note also that Eq. �9�
implies all 23,999 previous values should be used for condition-
ing when simulating the last value in the field, and this requires
inversion of a �22 covariance matrix with size 23,999�23,999.
In practice, however, the distant values are “screened” because
the closest values are dominant. Thus, the number of conditioning
points can be significantly reduced, decreasing the computational
expense of the procedure without practically affecting the result-
ing conditional distribution. An implementation of the algorithm,
which addresses these and other practical issues, is available as
part of the open-source GSLIB software package �Deutsch and
Journel 1997�. Example simulations of N1,60 values generated
using this approach and software package are shown in Fig. 3. In
Fig. 4, the mean and standard deviation of 1,000 simulations gen-
erated using this method are shown. In Fig. 4�b�, it can be seen
that the standard deviation of N1,60 values is lowest near the
sampled locations, reflecting the effect of spatial dependency. In
the next section, these simulations of soil properties will be used
to evaluate liquefaction phenomena of engineering interest.

Probability of Liquefaction for a Given Ground Motion
Intensity

To perform the evaluation of liquefaction occurrence, the proce-
dure illustrated in Fig. 1 is used. The site of interest is divided
into discrete cells. For each soil or ground motion property used

in Eq. �1�, a matrix of values is generated representing that vari-
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able’s value at each cell. When measurements of the property are
available at some locations, then the measured values are input
into the matrix, and the remaining cells are simulated conditional
on those values, using the approach described above. Some vari-
ables such as earthquake magnitude will take the same value in
each cell, while the values of other variables will vary. The illus-
trations in Fig. 3 are simply graphical displays of these matrices.
Some variables can also be specified deterministically if their
uncertainty is not expected to affect the results.

Once all the matrices are generated, Eq. �1� can be evaluated at
each location in the site to determine whether liquefaction has
occurred at the given location and for the given realization of
model parameters. By repeating this simulation and evaluation
procedure multiple times, the probabilistic behavior of the extent
of liquefaction can be evaluated. To illustrate, example evalua-
tions of liquefaction extent are shown in Fig. 5. To generate
Fig. 5, a magnitude 7.4 earthquake with a PGA of 0.3g was as-
sumed. While the magnitude was chosen to match that of the
1999 event that occurred nearby, the results are not intended to be
a validation of the model for that event. The plotted examples
correspond to the N1,60 values shown in Fig. 3, but there is not a
one-to-one mapping between the two pictures because of the un-
certainty in the other model parameters used to generate Fig. 5.

The graphical illustrations are useful, but they must be sum-
marized if a large number of simulations are to be efficiently
considered. Any function of interest can be evaluated for each of
the simulations and then summarized numerically or graphically.
For example, liquefaction occurrence under Building A1 may be
of interest. It is simple to define a variable Y representing the

Fig. 3. Three conditional simulations of corrected SPT blow count
�N1,60� values. Locations with measured N1,60 values are circled.
fraction of liquefied area under Building A1, and measure the
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liquefied area associated with each Monte Carlo simulation. This
can be formulated mathematically using the following equation:

P�Y � y�pga,m� =

X

I�h	g�X�pga,m� � y
�fX�x�dx �10�

where g�X �pga,m�=limit-state function from Eq. �1�, evaluated
for PGA=pga and magnitude=m, with g now written in bold to
denote that it is a vector output corresponding to the limit-state
values at all 24,000 site locations. The random variable X repre-
sents the vector of all input soil variables at each location in the
site; and fX�x�=joint probability density function of the variables.
The function h�·� produces a scalar output for a given realization
of liquefaction extent; in this example h�·��fraction of liquefied
area under Building A1. The distribution of values that h�·� takes
is represented by the random variable Z, and the indicator func-
tion I	h�·��y
 takes value 1 if h�·��y, and 0 otherwise.

Evaluating Eq. �10� involves considering all possible realiza-
tions of soil properties X at the site, but numerical integration is
not possible because X is very high dimensional �i.e., it contains
four soil properties �24,000 locations in this example�. For this
reason, the simulation approach described above is used to evalu-
ate this integral. The results from this calculation are shown in
Fig. 6. One hundred simulations of N1,60 values were generated
using Eq. �7� with c values of 10, 25, and 50 m, to show the ef-
fect of spatial dependence on calculated results. The calculations
take only a few minutes on a desktop computer, so the computa-
tional expense for simulation should not be unreasonable for
many applications.

For a c value of 25 m, there is approximately a 50% probabil-
ity that some portion of the soil will liquefy, but only a 15%
probability that more than half of the area under the building will
liquefy. Thus, the implied reliability of the building with respect
to liquefaction is dependent upon the liquefied area which is re-
quired to cause building failure. For all three values of the corre-
lation range parameter c, the mean liquefied area from this event

Fig. 4. �a� Mean; �b� standard deviation, of simulated N1,60

values. Locations with measured N1,60 values are circled.
is approximately 10% of the building area. Small c values are
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associated with a higher probability of observing small liquefied
areas and a lower probability of observing large liquefied areas.
These results make clear the effect of spatial dependencies on the
potential extent of liquefaction.

Incorporating Multiple Ground Motion Intensity Levels

The results in Fig. 6 were obtained by inputting fixed values for
earthquake magnitude and peak ground acceleration. But without
knowing the rate of occurrence of this specific event �and others�,
it is not clear whether this performance is acceptable �Kramer
et al. 2006�. For this reason, ground motion hazard results are
incorporated in the analysis. The mean rate density from PSHA
provides the joint probability density function of magnitude and
PGA, multiplied by the rate of occurrence of earthquake events.
The most direct way to incorporate this information is to sample
PGA and M values from this joint distribution, and use them in
the Monte Carlo scheme discussed in the previous section. The
difficulty with this approach is that events with small M and/or
PGA values are orders of magnitude more likely to occur than
the largest events, and so the great majority of simulations will be
for small events. An alternative approach proposed here is to
use Monte Carlo simulation for the soil properties and numerical
integration for the ground motion intensity. This approach is
effective because the ground motion intensity variables contribute
significantly to variability in the final output, and a large set of
other parameters cannot be integrated over numerically �Gentle

Fig. 5. Locations of liquefaction triggering, as computed from the
conditional simulations of site soil properties, and given a magnitude
7.4 earthquake with a PGA of 0.3g. Liquefied regions are shaded, and
locations with measured N1,60 values are circled.
2003�.
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The first step in the proposed approach is to perform an evalu-
ation conditional upon a given PGA and M value, as was done in
the Eq. �10�. To complete the evaluation, one must then consider
the entire range of relevant PGA and magnitude values using the
following equation:

	�Y � y� =

PGA



M

P�Y � y�pga,m�MRDPGA,M�pga,m�dpga dm

�11�

where P�Y �y �pga,m� comes from Eq. �10�; and MRDPGA,M

�pga ,m�=mean rate density of PGA and M. The mean rate den-
sity used in this example calculation is shown in Fig. 7. It was
obtained by processing the results from a site-specific hazard
analysis with deaggregation �Bazzurro 1998, p. 195�. By integrat-
ing over all PGA and M values using the total probability theo-
rem, it is possible to obtain 	�Y �y�, the rate of exceedance of the
variable of interest, Y, over some specified threshold value y.
There are only two scalar variables to integrate over in this case,
so numerical integration is feasible. Results from Eq. �11� are
shown in Fig. 8. Fig. 8 was generated using the soil properties

Fig. 6. Probability of exceedance versus fraction of the area under
Building A1 that liquefies, given a magnitude 7.4 earthquake with a
PGA of 0.3g. Results are shown for three different models of N1,60

spatial correlation.

Fig. 7. Mean rate density of peak ground acceleration and earthquake
magnitude, obtained from probabilistic seismic hazard analysis
RING © ASCE / JANUARY 2008



model discussed above, and using 20 PGA values and 10 M val-
ues for the numerical integration of Eq. �11�.

Again, the effect of spatial correlation is seen clearly when
considering three different values for the range parameter c. This
parameter again affects the relative ratio of small liquefied re-
gions and large liquefied regions. While the specific results
depend upon the random variable assumptions used here for illus-
tration, they nonetheless illustrate the potentially useful informa-
tion that can be obtained using the approach. The estimated rate
of exceedance of a given liquefied area can be computed explic-
itly, considering uncertainties and spatial dependencies in soil
properties and ground motion intensity.

Discussion

The framework described can characterize the potential spatial
distribution of soil liquefaction. Significant challenges remain,
however, with respect to modeling assumptions and parameter
estimation. The model for spatial dependence of soil properties
depends solely on the correlation coefficient between normal-
score transformed values. This approach has been seen to provide
good results in a variety of mining and petroleum engineering
applications �Goovaerts 1997�, but its validity should still be veri-
fied when possible. Probabilistic properties such as ergodicity and
homogeneity should also be considered when choosing a model
�Phoon et al. 2003; Rackwitz 2000�. The specification of which
parameters are ergodic and nonergodic will be important for test
planning, and nonergodicity of parameters may cause difficulties
for parameter estimation.

A further challenge for random-field characterization is the
presence of soil layers. When the soil is composed of several
discrete layers with significantly differing properties, then model-
ing may become more complicated. Empirical liquefaction crite-
ria often depend only upon soil values from the most susceptible
layer. In the example calculation above, measured soil values in
critical layers appeared to be well modeled by assuming that it all
came from the same population, but this conclusion may not hold

Fig. 8. Rate of exceedance versus fraction of the area under Building
A1 that liquefies, considering all possible ground motion intensities
as specified by the ground motion hazard. Results are shown for three
different models of N1,60 spatial correlation.
for other sites. Improved methods for dealing with layered, or
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otherwise structured, random fields are in active development
�e.g., Krishnan and Journel 2003�, but their applicability for this
problem has yet to be determined. In particular, approaches of the
type cited require a training image that provides a representation
of the phenomenon being studied, and it may not be feasible to
develop a reasonable training image for soil layering without per-
forming extensive sampling. Modifications to the model used
above should nonetheless be considered if they are deemed im-
portant and can be characterized.

The use of empirical liquefaction criteria with the framework,
while appealing because it is simple and used often in practical
evaluations, has some weaknesses. Empirical models generally
claim to address only the initial triggering of liquefaction and not
provide information about posttriggering behavior—although it
has been suggested that some criteria may also indicate liquefac-
tion severity �Iwasaki et al. 1978; Toprak and Holzer 2003�. The
physical process of interest is caused by buildup of pore water
pressure due to dynamic excitation, and so liquefaction of soil at
one location will generally affect the behavior of the surrounding
soil. This may be an important phenomenon when modeling the
spatial extent of liquefaction. Using a coarser discretization of the
site may avoid the implied independence of liquefaction trigger-
ing at adjacent cells for a given set of input parameters, thus
reducing the potential errors introduced by this approach. Rela-
tively few empirical-type models are available for interactions
between structures and potentially liquefiable soil �e.g., Rollins
and Seed 1990�, although this effect would be possible to incor-
porate in the above approach. Models that use finite-element
analysis to model liquefaction promise to address these issues
more rigorously �Fenton and Vanmarcke 1998; Koutsourelakis
et al. 2002; Popescu et al. 2005�, but also require more computa-
tional expense and analyst time to model the site. The writers are
not aware of any finite-element studies that consider spatially
variable soil models conditional upon nearby observed values.
Finite-element models could be used in the above framework,
after several modifications were made. First, the random fields for
the soil would need three dimensions rather than the two dimen-
sions used above; this poses no problems for the geostatistics
algorithms, but estimating and specifying the needed random-
field parameters will be more challenging. Second, ground motion
time histories will be needed to represent the ground motion
input, rather than just PGA/M values—this will make it more
difficult to consider all possible ground motions, and will likely
prohibit the use of the proposed stratified sampling technique to
reduce computational expense. Finally, spatial variability of
ground motion will require more careful consideration for small
sites because incoherence of the ground motions will need to be
considered, and incoherence occurs at smaller spatial scales than
variability of the peak ground acceleration values needed above.
It is not yet known to what extent these additional challenges will
limit the adoption of this method for use with finite-element-
based evaluations.

Geotechnical engineering assessments often must incorporate
information from varying sources and of varying quality, and this
framework is no different. In the example application, only SPT
data were used, and further work will address the need to simul-
taneously incorporate other data sources such as nearby CPT
tests. This task is challenging because the different information
sources will generally not describe the same soil properties, and
liquefaction criteria based on the various soil properties may not
be consistent.

Finally, it is relevant to note that liquefaction is only one of

several mechanisms by which earthquake ground motions can
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cause an engineering system to fail. In order to make fully in-
formed decisions for managing liquefactions risks, it would be
helpful to consider a system that incorporates all potential failure
mechanisms �e.g., structural collapse, liquefaction, and bearing
failure due to soil–structure interaction�. A number of active re-
search fields are aiding in progress toward this goal.

Summary

A framework has been proposed for evaluating the potential
spatial distribution of liquefaction occurrence, conditional upon
observations of soil properties obtained from site samples. The
framework incorporates several engineering models that are
rarely used together. Geostatistics tools are used to model uncer-
tain soil properties, conditional upon observed values obtained
from samples at a few locations in the area of interest. Probabi-
listic seismic hazard analysis is used to compute the distribution
of intensity of future ground motion shaking. An empirical lique-
faction triggering criterion is used to model liquefaction occur-
rence as a function of soil properties and ground motion intensity.
These model components are all available presently, although
they have been developed independently and have not previously
been combined in the form seen here.

The numerical procedures have been outlined to demonstrate
the feasibility of the proposed approach. Existing software tools
for seismic hazard analysis and geostatistics facilitate the needed
computations, and allow calculations of this type to be per-
formed without great effort. An example calculation has been
performed to illustrate the details of the approach and demon-
strate the type of information that can be obtained. Estimating the
needed probability distributions for soil properties at a given site
will likely prove the greatest challenge for implementation of this
approach.

By considering treating soil properties, ground motion shak-
ing, and liquefaction triggering probabilistically, this approach al-
lows for a more complete evaluation of liquefaction risk than is
possible using more simplified criteria. The simultaneous consid-
eration of random �unknown� soil properties and random future
earthquake shaking is an improvement over many current assess-
ments that only consider a single level of ground motion intensity
from a scenario earthquake. By accounting for a range of possible
ground motions, annual rates of liquefaction can be computed,
making it possible to produce design projects that have uniform
levels of risk. Further, by considering spatial dependence of soil
properties, the extent of liquefied area under a building can be
characterized and used for decision making. With these assess-
ment approaches, progress can be made toward considering costs
and benefits explicitly when making engineering decisions re-
garding liquefaction risk.
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Notation

The following symbols are used in this paper:
CSReq � equivalent cyclic stress ratio;

d � depth of the critical liquefaction susceptible
layer;

f
�e� � joint PDF of all input soil variables at all
locations;

F�·� � cumulative distribution function of a given
soil property;

FC � soil fines content;
g � acceleration of gravity;

g�·� � liquefaction limit state function;
g�· ,u� � liquefaction limit state function, evaluated at

location u;
h � vector distance between two locations;

h�·� � function that produces a scalar output from
a given realization of liquefaction extent at
the site �e.g., fraction of area liquefied�;

I�·� � indicator function, taking value 1 if the
argument is true and 0 otherwise;

M � earthquake moment magnitude;
MRDPGA,M�·� � mean rate density of PGA and M;

N�� ,�� � random vector having a Gaussian distribution
with mean � and covariance �;

N1,60 � soil SPT blow count;
PGA � peak ground acceleration;

rd � nonlinear shear mass participation factor;
u � location within the site;

Vs,12 m
* � representative shear wave velocity over the

top 12 m of the soil;
Z�u� � distribution of the normal-score-transformed

soil variable at location u;
�L � model uncertainty in the liquefaction

triggering criterion;
�rd

� model uncertainty in the rd prediction;

�−1�·� � inverse of the standard Gaussian cumulative
distribution function;

��·� � semivariogram;
	�Y �y� � annual rate of exceedance of Y over some

specified threshold y;
�v � soil vertical stress; and

�v� � soil effective vertical stress.
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